Glutathione influences c-Myc-induced apoptosis in M14 human melanoma cells.
نویسندگان
چکیده
The objective of this article is to dissect the mechanisms by which the down-regulation of c-Myc induces programmed cell death in melanoma cells. In stable and doxycycline-inducible M14 melanoma cells, down-regulation of c-Myc induced apoptosis subsequent to a decrease in the intracellular reduced glutathione content and a concomitant accumulation of its oxidized form. This redox alteration was associated with a decrease of the enzyme activities of gamma-glutamyl-cysteine synthetase and NADPH-dependent GSSG reductase, as well as a consequent glutathione release in the extracellular medium. Cytochrome c was released into the cytosol at very early stages of apoptosis induction, long before detectable production of reactive oxygen species and activation of caspase-9 and -3. Macroarray analysis revealed that down-regulation of c-Myc produced striking changes in gene expression in the section related to metabolism, where the expression of gamma-glutamyl-cysteine synthetase and GSSG reductase was found to be significantly reduced. The addition of N-acetyl-l-cysteine or glutathione ethyl ester inhibited the apoptotic process, thus confirming the key role of glutathione in programmed cell death induced by c-Myc.
منابع مشابه
Glutathione depletion induced by c-Myc downregulation triggers apoptosis on treatment with alkylating agents.
Here we investigate the mechanism(s) involved in the c-Myc-dependent drug response of melanoma cells. By using three M14-derived c-Myc low-expressing clones, we demonstrate that alkylating agents, cisplatin and melphalan, trigger apoptosis in the c-Myc antisense transfectants, but not in the parental line. On the contrary, topoisomerase inhibitors, adriamycin and camptothecin, induce apoptosis ...
متن کاملc-Myc down-regulation increases susceptibility to cisplatin through reactive oxygen species-mediated apoptosis in M14 human melanoma cells.
Our aim in this work was to define the role of c-Myc in the susceptibility to cisplatin [cis-diamminedichloroplatinum(II) (CDDP)] in human melanoma cells. Two M14 melanoma cell clones obtained by transfection and expressing six to ten times lower c-Myc protein levels than the parental cells and the control clone were employed. Analysis of survival curves demonstrates an increase in CDDP sensiti...
متن کاملEffect of valproic acid on JAK/STAT pathway, SOCS1, SOCS3, Bcl-xL, c-Myc, and Mcl-1 gene expression, cell growth inhibition and apoptosis induction in human colon cancer HT29 cell line.
Background and aim: Cytokines are a large family of protein messengers. These proteins induce various cellular responses. Janus kinases (JAKs) are mediators of cytokine, activated JAKs phosphorylate signal transducers, and activators of transcription (STAT) proteins that regulate cell differentiation, proliferation, and apoptosis. Aberrant JAK/STAT signaling is involved in the oncogenesis of se...
متن کاملRole of Caspases and Reactive Oxygen Species in Rose Bengal-Induced Toxicity in Melanoma Cells
Objective We have previously shown that Rose Bengal (RB) alone, not as a photosensitiser, could induce apoptotic- and non-apoptotic cell death in different melanoma cell lines. To clarify RB-induced toxicity mechanisms, role of caspases and reactive oxygen specious (ROS) were studied in melanoma cells. Material and Methods Human melanoma cell lines, Me 4405 and Sk-Mel-28 were cultured in DM...
متن کاملTransfection of melanoma cells with antisense PAX3 oligonucleotides additively complements cisplatin-induced cytotoxicity.
Advanced melanoma is difficult to treat, in part because of greater resistance to therapy compared with other cancer types. The mechanisms underlying this resistance are not well-understood. One factor that is reported to be involved in melanoma cell survival is PAX3, a transcription factor normally expressed during embryonic development, and which is critically required for development of neur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 277 46 شماره
صفحات -
تاریخ انتشار 2002